As electronics designers and manufacturers continue to move toward smaller, faster and higher performing devices, the challenge of thermal management is steadily mounting. Less board space and increased operating frequencies are raising temperatures, and risking reduced device performance and reliability over time. To help electronics designers and manufacturers address these thermal challenges, Dow Corning is introducing two advanced new products to its proven line of Thermal Interface Materials (TIMs): Dow Corning® TC-5622 and TC-5351 Thermally Conductive Compounds.
“Improved thermal management is increasingly critical to maintaining the long-term performance and reliability of electronics in virtually every end market, including transportation, semiconductors, power electronics, solid-state lighting, data centers and telecommunications and consumer electronics,” said Margaret Servinski, new market business development manager, Thermal Materials at Dow Corning. “These new materials exemplify Dow Corning’s proactive approach to innovating solutions to industry challenges to help our customers innovate, compete and succeed.”
Dow Corning TC-5622 Thermally Conductive Compound offers good thermal performance and improved stability against hardening or dry-out in end-use applications. Its optimized rheology eliminates the need for common solvent diluents in the formulation, which can evaporate over time. That translates into lower environmental impact in the manufacturing area, and more consistent product performance during processing and over the lifetime of the device. The proprietary filler in Dow Corning TC-5622 Thermally Conductive Compound results in a material with high bulk thermal conductivity, and the ability to achieve thin bond line thicknesses (BLTs). This ensures low thermal resistance in both thin and thicker BLT applications that demand high heat dissipation. Dow Corning TC-5622 Thermally Conductive Compound also has a relatively low specific gravity that results in a cost savings compared to many TIMs. The material offers a unique combination of high performance, stability, ease of use and low cost.
The company formulated its Dow Corning TC-5351 Thermally Conductive Compound to deliver consistently high performance in important electronics end-markets, such as automotive, power electronics, and high-brightness LED lighting applications. Its high viscosity formulation and optimized filler technology make it well suited for applications demanding resistance to high temperatures and large gap thicknesses. It is ideal for vertical applications requiring a thermal material able to remove heat without flowing out of the gap or changing viscosity as temperatures rise.
Dow Corning thermally conductive compounds are especially designed to address thermal challenges faced in many of today’s most demanding electronics applications. In addition to its broad portfolio of advanced thermal compounds, Dow Corning also offers a full line of high-performance thermally conductive adhesives, gap fillers and gels to meet critical industry needs. To learn more about Dow Corning’s advanced silicone technologies for thermal management and other applications, please visit dowcorning.com/electronics.
About Dow Corning
Dow Corning (dowcorning.com) provides performance-enhancing solutions to serve the diverse needs of more than 25,000 customers worldwide. A global leader in silicones, silicon-based technology and innovation, Dow Corning offers more than 7,000 products and services via the company’s Dow Corning® and XIAMETER® brands. Dow Corning is equally owned by The Dow Chemical Company and Corning, Incorporated. More than half of Dow Corning’s annual sales are outside the United States. Dow Corning’s global operations adhere to the American Chemistry Council’s Responsible Care® initiative, a stringent set of standards designed to advance the safe and secure management of chemical products and processes.
® Dow Corning is a registered trademark of Dow Corning Corporation.
® XIAMETER is a registered trademark of Dow Corning Corporation.
® Responsible Care is a registered service mark of the American Chemistry Council, Inc.
More Stories
LED Lighting for Heavy-Duty Applications: Durability, Efficiency, and Versatility
Celanese Materials Shine in Multiple Category Winners at 2024 SPE Automotive Innovation Awards
New future-ready single-slot PXIe controller for high-performance T&M applications from Pickering Interfaces